3.9.31 \(\int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx\) [831]

Optimal. Leaf size=319 \[ -\frac {\left (a^2+2 a b-b^2\right ) \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {\left (a^2+2 a b-b^2\right ) \text {ArcTan}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {a^{3/2} \left (a^2+5 b^2\right ) \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{b^{3/2} \left (a^2+b^2\right )^2 d}-\frac {a^2 \sqrt {\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}-\frac {\left (a^2-2 a b-b^2\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {\left (a^2-2 a b-b^2\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d} \]

[Out]

-a^(3/2)*(a^2+5*b^2)*arctan(a^(1/2)*cot(d*x+c)^(1/2)/b^(1/2))/b^(3/2)/(a^2+b^2)^2/d+1/2*(a^2+2*a*b-b^2)*arctan
(-1+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)^2/d*2^(1/2)+1/2*(a^2+2*a*b-b^2)*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))/(a^
2+b^2)^2/d*2^(1/2)-1/4*(a^2-2*a*b-b^2)*ln(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)^2/d*2^(1/2)+1/4*(a^
2-2*a*b-b^2)*ln(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)^2/d*2^(1/2)-a^2*cot(d*x+c)^(1/2)/b/(a^2+b^2)/
d/(b+a*cot(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.40, antiderivative size = 319, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 13, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.565, Rules used = {3754, 3650, 3734, 3615, 1182, 1176, 631, 210, 1179, 642, 3715, 65, 211} \begin {gather*} -\frac {\left (a^2+2 a b-b^2\right ) \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d \left (a^2+b^2\right )^2}+\frac {\left (a^2+2 a b-b^2\right ) \text {ArcTan}\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )^2}-\frac {a^2 \sqrt {\cot (c+d x)}}{b d \left (a^2+b^2\right ) (a \cot (c+d x)+b)}-\frac {\left (a^2-2 a b-b^2\right ) \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )^2}+\frac {\left (a^2-2 a b-b^2\right ) \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )^2}-\frac {a^{3/2} \left (a^2+5 b^2\right ) \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{b^{3/2} d \left (a^2+b^2\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Cot[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^2),x]

[Out]

-(((a^2 + 2*a*b - b^2)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)^2*d)) + ((a^2 + 2*a*b - b^
2)*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)^2*d) - (a^(3/2)*(a^2 + 5*b^2)*ArcTan[(Sqrt[a]*
Sqrt[Cot[c + d*x]])/Sqrt[b]])/(b^(3/2)*(a^2 + b^2)^2*d) - (a^2*Sqrt[Cot[c + d*x]])/(b*(a^2 + b^2)*d*(b + a*Cot
[c + d*x])) - ((a^2 - 2*a*b - b^2)*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)^
2*d) + ((a^2 - 2*a*b - b^2)*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)^2*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3650

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3734

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3754

Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Cot[e + f*x])^(m - n*p)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rubi steps

\begin {align*} \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^2} \, dx &=\int \frac {1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))^2} \, dx\\ &=-\frac {a^2 \sqrt {\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}-\frac {\int \frac {\frac {1}{2} \left (-a^2-2 b^2\right )+a b \cot (c+d x)-\frac {1}{2} a^2 \cot ^2(c+d x)}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))} \, dx}{b \left (a^2+b^2\right )}\\ &=-\frac {a^2 \sqrt {\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}-\frac {\int \frac {b \left (a^2-b^2\right )+2 a b^2 \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx}{b \left (a^2+b^2\right )^2}+\frac {\left (a^2 \left (a^2+5 b^2\right )\right ) \int \frac {1+\cot ^2(c+d x)}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))} \, dx}{2 b \left (a^2+b^2\right )^2}\\ &=-\frac {a^2 \sqrt {\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}-\frac {2 \text {Subst}\left (\int \frac {-b \left (a^2-b^2\right )-2 a b^2 x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{b \left (a^2+b^2\right )^2 d}+\frac {\left (a^2 \left (a^2+5 b^2\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-x} (b-a x)} \, dx,x,-\cot (c+d x)\right )}{2 b \left (a^2+b^2\right )^2 d}\\ &=-\frac {a^2 \sqrt {\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}+\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right )^2 d}+\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right )^2 d}-\frac {\left (a^2 \left (a^2+5 b^2\right )\right ) \text {Subst}\left (\int \frac {1}{b+a x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{b \left (a^2+b^2\right )^2 d}\\ &=-\frac {a^{3/2} \left (a^2+5 b^2\right ) \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{b^{3/2} \left (a^2+b^2\right )^2 d}-\frac {a^2 \sqrt {\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^2 d}+\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^2 d}\\ &=-\frac {a^{3/2} \left (a^2+5 b^2\right ) \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{b^{3/2} \left (a^2+b^2\right )^2 d}-\frac {a^2 \sqrt {\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}-\frac {\left (a^2-2 a b-b^2\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {\left (a^2-2 a b-b^2\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}\\ &=-\frac {\left (a^2+2 a b-b^2\right ) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {\left (a^2+2 a b-b^2\right ) \tan ^{-1}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {a^{3/2} \left (a^2+5 b^2\right ) \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{b^{3/2} \left (a^2+b^2\right )^2 d}-\frac {a^2 \sqrt {\cot (c+d x)}}{b \left (a^2+b^2\right ) d (b+a \cot (c+d x))}-\frac {\left (a^2-2 a b-b^2\right ) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {\left (a^2-2 a b-b^2\right ) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 2.80, size = 279, normalized size = 0.87 \begin {gather*} -\frac {96 a^{3/2} \sqrt {b} \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )+\frac {24 a^2 \left (a^2+b^2\right ) \sqrt {\cot (c+d x)} \left (\frac {\sqrt {b} \text {ArcTan}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{\sqrt {a} \sqrt {\cot (c+d x)}}+\frac {b}{b+a \cot (c+d x)}\right )}{b^2}-32 a b \cot ^{\frac {3}{2}}(c+d x) \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\cot ^2(c+d x)\right )+6 \sqrt {2} \left (a^2-b^2\right ) \left (2 \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-2 \text {ArcTan}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )+\log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )\right )}{24 \left (a^2+b^2\right )^2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Cot[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^2),x]

[Out]

-1/24*(96*a^(3/2)*Sqrt[b]*ArcTan[(Sqrt[a]*Sqrt[Cot[c + d*x]])/Sqrt[b]] + (24*a^2*(a^2 + b^2)*Sqrt[Cot[c + d*x]
]*((Sqrt[b]*ArcTan[(Sqrt[a]*Sqrt[Cot[c + d*x]])/Sqrt[b]])/(Sqrt[a]*Sqrt[Cot[c + d*x]]) + b/(b + a*Cot[c + d*x]
)))/b^2 - 32*a*b*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1, 7/4, -Cot[c + d*x]^2] + 6*Sqrt[2]*(a^2 - b^2)*(2
*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 2*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]] + Log[1 - Sqrt[2]*Sqrt[Cot[
c + d*x]] + Cot[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]))/((a^2 + b^2)^2*d)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 16.30, size = 20282, normalized size = 63.58

method result size
default \(\text {Expression too large to display}\) \(20282\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [A]
time = 0.52, size = 284, normalized size = 0.89 \begin {gather*} -\frac {\frac {4 \, {\left (a^{4} + 5 \, a^{2} b^{2}\right )} \arctan \left (\frac {a}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{4} b + 2 \, a^{2} b^{3} + b^{5}\right )} \sqrt {a b}} + \frac {4 \, a^{2}}{{\left (a^{2} b^{2} + b^{4} + \frac {a^{3} b + a b^{3}}{\tan \left (d x + c\right )}\right )} \sqrt {\tan \left (d x + c\right )}} - \frac {2 \, \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{4} + 2 \, a^{2} b^{2} + b^{4}}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/4*(4*(a^4 + 5*a^2*b^2)*arctan(a/(sqrt(a*b)*sqrt(tan(d*x + c))))/((a^4*b + 2*a^2*b^3 + b^5)*sqrt(a*b)) + 4*a
^2/((a^2*b^2 + b^4 + (a^3*b + a*b^3)/tan(d*x + c))*sqrt(tan(d*x + c))) - (2*sqrt(2)*(a^2 + 2*a*b - b^2)*arctan
(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(a^2 + 2*a*b - b^2)*arctan(-1/2*sqrt(2)*(sqrt(2) -
2/sqrt(tan(d*x + c)))) + sqrt(2)*(a^2 - 2*a*b - b^2)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - sq
rt(2)*(a^2 - 2*a*b - b^2)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))/(a^4 + 2*a^2*b^2 + b^4))/d

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + b \tan {\left (c + d x \right )}\right )^{2} \cot ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)**(5/2)/(a+b*tan(d*x+c))**2,x)

[Out]

Integral(1/((a + b*tan(c + d*x))**2*cot(c + d*x)**(5/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(5/2)/(a+b*tan(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((b*tan(d*x + c) + a)^2*cot(d*x + c)^(5/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{{\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cot(c + d*x)^(5/2)*(a + b*tan(c + d*x))^2),x)

[Out]

int(1/(cot(c + d*x)^(5/2)*(a + b*tan(c + d*x))^2), x)

________________________________________________________________________________________